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Abstract 

There are relationships among the phases and magnitudes 
of the structure factors that have not been extensively 
studied regarding their potential for enhancing proce- 
dures for structure determination. These relationships 
arise from a special way of writing the determinantal 
inequalities that form the necessary and sufficient 
conditions for a Fourier series to be non-negative. This 
particular form also lends itself readily to the develop- 
ment of probability measures by the use of the central 
limit theorem. Higher-order determinants are of interest. 
The relationships among the phases and magnitudes of 
the structure factors are algebraic relationships and the 
focus is on those which retain their reliability, even 
though the magnitudes of the structure factors contain 
experimental errors. The future utility of the algebraic 
relationships depends upon the development of suitable 
algorithms for solving them to obtain values for the 
unknown phases. One approach concerns a method for 
extending the range of least-squares calculations by 
modifying the defining equations without changing the 
global minima and by further altering the nature of the 
minimization function from time to time during the 
course of the least-squares calculation, while still 
preserving the global minima. The objective is to smooth 
the minimization function and alter the remaining false 
minima from time to time so that the minimization 
function is not trapped in a false minimum. Some 
calculations have been made that indicate the nature of 
the algebraic relationships among the phases and 
magnitudes and how the results of the calculations are 
benefited by having large values for the structure-factor 
magnitudes in the determinants. It is also noted that large 
numbers of lower-order determinants can be spawned 
from one large order one. A possible virtue of this is that 
the structure factors which appear in the one large 
determinant appear with great redundance in the lower- 
order ones. A question to be answered is whether it is 
better to use many lower-order determinants for the 
algebraic equations or one larger determinant, or perhaps 
some combinations. There are very many alternatives to 
pursue and probably extensive experimentation will be 
needed to determine what is optimal. 

Introduction 

There is reason to believe that structure analysis may 
continue to improve in terms of the speed and facility 

with which increasingly complex structures can be 
analyzed. This follows not only from the general 
overdeterminacy of the data for crystal structure 
problems, but also from the existence of a variety of 
powerful phase relationships that have received little or 
no attention. The latter relationships can be rather 
complex, accounting at least in part for the lack of 
attention. Modem computing facilities, however, can 
readily handle much of the complexity. Additional help 
may derive from a method for finding global minima in 
systems of nonlinear simultaneous equations (Karle, 
1991). 

The phase relationships to be discussed here are based 
on the determinants that arise from the non-negativity of 
a Fourier series (Karle & Hauptman, 1950). There are 
many ways in which the determinants may be used, e.g. 
as systems of simultaneous equations and as the 
components of generalized tangent formulae (Karle, 
1971). The determinants also appear as elements of 
probability functions (Tsoucaris, 1970; Karle, 1971, 
1978). The probabilistic implications of the determinant 
inequality theory may be realized by applying the central 
limit theorem to a particular form for writing the 
inequalities, namely (30) of Karle & Hauptman (1950). 

There are a very large number of possible variations in 
the selection and mode of application of the formulae. 
The determination of their potential and the evaluation of 
their relative efficacies, therefore, could occupy much 
future effort. 

In many circumstances, the formulae to be discussed 
are quite accurate. Although they are based on the 
determinants that characterize non-negative Fourier 
series, the mathematical relationships are not based on 
the maximum determinant rule, given in special form 
(Tsoucaris, 1970) and discussed in more general form 
(Heinerman, Kroon & Krabbendam, 1979; Karle, 1978). 
They are, instead, algebraic relationships that derive from 
special properties of the determinants. Some of the 
special properties can be used to derive joint probability 
distributions of the elements in the determinants that are 
consistent with the general form of the maximum 
determinant rule (Karle, 1978). The algebraic relation- 
ships are, nevertheless, quite distinct from the rule. 

Progress has been made in the application of the 
general form of the maximum determinant rule as 
described by de Gelder, de Graaff & Schenk (1993). 
Although the maximum determinant rule has not been 
proven rigorously, it is likely to be correct and that a 
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correct structure is to be found among those atomic 
arrangements that make sets of determinants with values 
close to their maximum• As noted, however, this article 
offers an alternative approach. 

The objective of this paper is to provide new 
mathematical opportunities with the potential to enhance 
capabilities in evaluating phases. New developments in 
structure determination evolve from new mathematical 
opportunities. This article describes some of the special 
features of the determinants related to the phase problem, 
including the determinants of higher and higher order, 
associated generalized tangent formulae based on them 
and corresponding probability distributions. Also dis- 
cussed is a way of extending the utility of the least- 
squares method. There is the potential here for useful 
analytical algorithms. In developing such algorithms in 
the future, progress may also stem from the discovery of 
new techniques in or new applications of numerical 
analysis• 

Examination of the mathematical presentation will 
indicate that there is a vast number of ways to generate 
the almost endless number of determinants and tangent 
formulae. There is, therefore, a vast number of choices 
that need to be considered and evaluated in the course of 
developing useful algorithms. 

Determinants 

The determinants associated with non-negative Fourier 
series can be written in terms of structure factors, unitary 
structure factors or quasi-normalized structure factors. It 
is not accurate to write them in terms of normalized 
structure factors. We choose here to present the relevent 
mathematics in terms of quasi-normalized structure 
factors. Quasi-normalized structure factors gh are defined 
by 

gh = f ~  ~ fjh exp(2zrih.rj), (1) 
=1 j=l 

where the sum on the right side defines F h, the structure 
factor associated with the reciprocal vector h, and fjh 
represents the atomic scattering factor for the flh atom in 
the unit cell containing N atoms. A general form for the 
determinants of interest is 

G0 G-k i 

Gk, G0 

D i n ,  p - - -  . . . . . . . . . . . .  

Gkm_ 2 Gkm_2-k I 

Gkm_ | Gkm_ ' - k ,  

> 0 (rank N), 

~ _ k 2  • . . G _ k m _ l  

Gk I - k  2 • . . ~k l_km_  I 

. . . . . . . . . . . .  

. . . . . .  G k m - 2 - k m -  I 

. . . . . .  G 0 

(2) 

where m is the order of the determinant and p represents 
a particular set of k l, k 2 . . . . .  kin_ 1. Rank N indicates 

D m p = 0 when m > N, where N is the number of atoms 
m the unit cell. There is the assumption that g truly 
represents a point atom structure (Hauptman & Karle, 
1950; Goedkoop, 1950). This is strictly true when fi h in 
(1) all have the same shape as a function of scattering 
angle• The necessary and sufficient condition for having 
a non-negative Fourier series is the non-negativity of an 
infinite set of determinants of type (2) (Karle & 
Hauptman, 1950)• Alternatively, the determinantal 
inequalities can be written based on (30) of Karle & 
Hauptman (1950). A comparable expression is 

Igk. - 8m.pl <_ rm.p, (3) 

which is somewhat more general in form, although not in 
content, since ,5' k refers to any element in D,,,,p, not just 
the particular element in the last row and first column. (3) 
states that the quasi-normalized structure factor £'k0 is 
bounded by a circle in the complex plane whose center is 
3m.p and radius is rm. p. The quantities 6rap and rm, p are 
defined by 

and 

8ram = A'.p/Am.p (4) 

112 1/2 
r~.p = Ai.m.pA2.m.pl Am.p, (5) 

£kq "~ (~m.p(kq) )m,p  • (7) 

A variety of simultaneous equations can be generated 
from (7). The accuracy of such equations is of 
considerable interest. In particular, with the vast choice 
of determinants, optimal selection and the development 
of procedural algorithms that are both accurate and 
efficient are important considerations. The ensuing 
mathematical discussions will characterize more specifi- 
cally the nature of the equations involved and suggest 
some paths to investigate for their application that may, 
in time, become fruitful. 

and 

'~kq = 3m.p (6) 

where: 
(a) Am, p is formed from Dm, p by omitting the row and 

column that contain G_ k , replacing the element g k by 
zero, and multiplying by"(-  1) r+~ where r is the row aqnd s 
is the column in which gk, o c c u r s ,  kq = kr_  1 - k s _ l ,  
where k 0 = (0, 0, 0). 

(b) Am, p is formed from Dram by omitting the rows and 
columns in which g k and G_ k occur. 

(C) A l,m, p IS formed " " " • " from Din, p by omitting the row in 
which 'fk occurs and the column in which g k occurs. 

q • . . - -  q 

(d) A2,m, p Is formed from D~,p by omlttmg the column 
in which G k occurs and the row in which G k occurs. 

q • . - -  q 

The assumption is made (Karle, 1971) that the 
expected value g is given by the center of the bounding 
circle in (3) so that 
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The genera t i on  o f  de t e rminan t s  

As (2) indicates, a determinant is formed by selection 
of the elements for the first column. The first row is 
formed from the corresponding complex conjugates of 
the elements in the first column. The subscripts of 
elements within the remaining part of the determinant are 
formed by summing the subscripts in the corresponding 
first row and first column. A relatively large number of 
large ]£] populating the determinants is desirable, since 
such a circumstance enhances the accuracy of the 
information obtained from them. There are various ways 
to approach this problem, as, for example, described by 
Taylor, Woolfson & Main (1978) and de Gelder, de 
Graaff & Schenk (1990). One method we have found 
useful is to select large )£] values for the first column of a 
high-order determinant that is of much higher order than 
that desired, and then eliminate the smallest magnitudes 
by crossing out the rows and columns that preserve 
principal minors. There are other procedures that could 
be considered, based in part, for example, on the average 
values of the various rows in the determinants as rows 
and columns are removed. 

Numerous lower-order determinants can be composed 
as principal minors of a higher-order determinant. Given 
a determinant of order m, the number of determinants of 
order n which are principal minors of the original 
determinant is 

Nm, . = m! / [ (m  - n)!n!], (8) 

and the number of those determinants that all contain one 
specific element, £ko, which exists in the original 
determinant, is 

Nm,~.kq = (m -- 2)!/[(m -- n)!(n -- 2)!]. (9) 

As an illustration, consider forming seventh-order 
determinants from a twelfth-order one. There are 792 
determinants of seventh-order formed from the one 
twelfth-order determinant and each individual element, if 
distinct in the original determinant, occurs in 252 
determinants. A potentially valuable feature of the 
determinants formed in this way is the fact that the only 
elements that occur in the determinants are those in the 
initial determinant and they all occur in a uniform 
fashion. Of course, if the initial determinant has some 
duplicate elements, they will continue to exist in the 
principal minors to a disproportionate extent. 

The equa t ions  

The phase equations are formed from sets of 
determinants, such as described above, with the use of 
(4) and (7). They are 

18h[ COSg) h --~ (RPA~h.s/Ah.s)s (10) 

Ignl sin q~h --~ (IPzi 'h.s/zih.,)s (1 1) 

s inq:~(RPA'h . , /Ah .s )  ~ "" cos ~( /PA~. , /Ah. , )  , (12) 

1£h12 , 2 , 2 (RPzih.Jzih.,), + (ZPzih.,/zih.~),, (13) 

where s labels a contributor to the average, 
R P A '  h = (Zig + zi[*)/2, IPzi'h --  (zi'h -- zi[*)/2i, and • 
denotes the complex conjugate. (12) and (13) can be 
derived from (10) and (11). As will be seen, although 
their information content is similar, the redundant 
equations can play a useful role in the way the equations 
are handled. (12) is a form of the tangent formula and 
(13), evidently, can compute magnitudes. 

Probability measures have been developed that could 
be relevant to the use of (10)-(13). Following an earlier 
derivation (Karle, 1971), we have for the probability 
distribution for ¢~,q from the use of the central limit 
theorem 

P ( ~ )  = [2Jrl0(a)] - |  e x p [ a c o s ( ~  - fl)], (14) 

where 

and 

°f--{[m~pKm,p(kq) C°SOm,p(kq)] 2 

4-[~m,pKm,p(kq) sinOm,p(kq)] 2 } 

Km.p(kq) : 2[Ekq~m.p(kq)l/O2m.p(kq) 
Sm.p(kq) -- [Sm.p(kq) I exp[iOm.p(kq)] 
O~m.,(ka) ~ [E~orm.,(kq)] ~ 

|/2 
(15) 

(16) 

(17) 

(18) 

tan 13 ~_ ~l~..,(k,)l sin O,,,,p(kq)/ m,p 

, 9 ,  

The variance of q~, , given a set of 8,,,.p(kq) and a set of 
r,,.p(kq), is given b~y 

oo 

v = ( ~ / 3 )  + [/0(~)]-' ~ h . ( ~ ) / n  2 
n = |  

oo 

- 4110(o0]-' y~JZ,+l(Ct) /(2n + 1) 2, (20) 
n = l  

where the / are Bessel functions of imaginary argument. 
Except for the new more general definition of a, this 
formula compares with (3.33) of Karle & Karle [(1966) 
after a correction of the sign of the last term]. The 
variance formula in the latter reference refers to the case 
m = 3 .  

For the case of a centrosymmetric crystal, inequality 
(3) implies a bound on the real axis with 

S~kq '~" SE~m.p(kq), (21) rn,p 
where S means sign of. The probability that the sign of 
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Table 1. Results of computations of phase errors and 
quasi-normalized structure-factor magnitudes by the use 
of single determinants of increasing order and (10) and 

( l l )  w i t h s =  1 

Element  ICI 
2,1 3.099 
3,1 1.250 
4, I 2.852 
5,1 2.662 
6, I .649 
7, I .602 
8,1 .158 
9, I .684 

10,1 .002 
I I,I .694 
12,1 .105 
13,1 .607 
14,1 .746 
15, I .074 

Magn i tude  o f  er ror  in ~OcaJc (radians)  
m = 15 m = 25 m = 35 m = 45 IEI.t~ (m = 45) 

0.340 0.193 0.010 0.009 2.928 
0.201 0.139 0.030 0.020 1.250 
0.256 O. 100 0.072 0.007 2.804 
0.050 0.011 0.026 O.{X)6 2.634 
0.249 O. 148 0.027 0.004 1.601 
0.237 0.088 0.025 0.006 1.606 
1.522 1.079 0.334 0.059 1.109 
0.352 0.219 0.057 0.043 !.803 
0.616 0.488 0.386 0.040 0.985 
0.244 0.146 0.079 0.011 i.730 
0.233 0.232 0.206 0.023 1.160 
0.129 0.043 0.115 0.008 1.633 
0.294 0.212 0.054 0.015 ! .697 
0.921 0.242 0.029 0.022 1.068 

Exact  phases  and magni tudes ,  for use in the determinant  calculat ions,  
were  compu ted  from a 50-a tom structural  model  in space group P I .  The  
magni tudes  o f  the phase errors  are l is ted for de terminants  of  order  15, 
25, 35 and 45, obta ined  as subdeterminants  o f  an initial de te rminant  o f  
o rder  50. Structure-faclor  magni tudes  compu ted  from the determinants  
are l is ted only  for m = 45. The  e lements  cons idered  are in the first 
co lumn of  the determinants .  The  correct  values  o f  ICI are g iven  in the 
second co lumn and may  be c o m p a r e d  with those ca lcula ted  from the 
de terminant  o f  o rder  45, l is ted in the last co lumn.  The magni tudes  o f  the 
phase  errors  show a corre la t ion with the cor responding  magni tudes  o f  
I~'1 for m = 15. They  ev iden t ly  become  very small  as the order  o f  the 
determinant  increases.  

'fkq is positive is 

p+(kq) "~ ½+½tanhl£kql~-]~Sm.p(kq)/a2,p(kq). (22) 
m,p 

For m = 3, (22) corresponds to the probability formula of 
Cochran & Woolfson (1955). 

Some calculations 

A few calculations have been made that indicate some 
of the characteristics of the higher-order determinants 
that occur in (2) and (4). The determinants were prepared 
by placing in the first column a selection of elements 
with indices not exceeding 3 and whose magnitudes were 
among the larger ones. The low indices for the first 
column assured that all the elements in the determinant 
would be easily found in the range of the data at hand 
and that the determinant would contain many elements of 
low magnitude. The model structure was based on 
coordinates for the zervamicin IIA analog (Karle, 
Sukumar & Balaram, 1986). The first 50 sets of atomic 
coordinates listed in Table 1 of the latter reference were 
treated as if they all belonged to the same type of atom 
and were placed in a unit cell of space group P1. 
Actually, the atoms were C, N and O. 

In actual phase determination procedures, it is very 
important to use determinants that have as high a 
population of large ICI values as possible. In general, 
determinants that have the largest ICI values are 
associated with the most accurate phase evaluations. 

Table 2. Results of computations of phase errors and 
quasi-normalized structure-factor magnitudes by the use 

of single determinants of increasing order 

Magnitude of error in ~0calc (radians) 
Element ICI m = 15 m = 25 m = 35 m = 45 ICl~al¢ (m = 4 5 )  

1,2 3.099 0.340 0.193 0.010 0.009 2.928 
3,2 0.805 0.053 0.309 0.126 0.032 0.826 
4,2 0.390 2.886 2.751 0.169 0.039 0.357 
5,2 2.852 0.066 0.026 0.037 0.010 2.885 
6,2 2.662 0.113 0.005 0.009 0.009 2.571 
7,2 1.649 0.243 0.116 0.031 0.003 !.629 
8,2 0.544 0.449 0.370 0.241 0.058 0.594 
9,2 0.753 1.688 1.360 0.053 0.012 0.655 

10,2 0.539 1.419 1.195 0.546 0.048 0.467 
11,2 0.563 0.021 0.208 0.007 0.032 0.537 
12,2 0.118 1.879 1.583 1.294 0.173 0.175 
13,2 0.728 2.835 2.380 0.277 0.001 0.691 
14,2 0.185 2.542 2.539 0.924 0.210 0.201 
15,2 0.787 0.202 0.003 0.108 0.028 0.786 

S imi la r  to Table  1, but concerning  e lements  in the second co lumn o f  
the de terminants .  Again ,  it is seen that the large errors  for the phases  are 
corre la ted  with low values  for I•1 and the lower  values  for m. For  
m = 45, there are no s ignif icant  errors  e i ther  for the calcula ted phases  or  
magni tudes .  

The purposes of the illustrations here, however, are 
served by the manner in which the determinants were 
formed. 

Table 1 concerns 14 elements in the first column of 
determinants of the order 15, 25, 35 and 45. Similarly for 
Table 2, which concerns 14 elements in the second 
column of the determinants of increasing order. Using 
(10) and (11), the phases were computed from the 
selected determinants in which the correct magnitudes 
and phases were inserted. This illustrates the accuracy of 
the determinant formulae for these particular determi- 
nants. It is apparent from examining the tables that the 
largest errors in the computed phases are associated with 
smaller values of ICI. It is also seen that the errors 
decrease significantly as the order of the determinant 
increases. The I~lcalc values from the 45th-order 
determinant agree well with the correct answers. 

Least-squares methods 

Least-squares procedures reqiaire knowledge of the 
partial derivatives of the determinants with respect to the 
unknown phases. The partial derivative of a determinant 
D with respect to the q9 k phase when, in general, similar 
and different functions of ~,f(~0k)  constitute some of 
the elements of the determinant is 

OD ~ - - M i j ,  (23) 

where ij C ~ indicates that the sum is taken over all ij 
possessin~ f(q~,) and Mij is the minor of the ij element, 
i.e. (-1)  -~j times the determinant formed by deleting the 
ith row and jth column. 

With the use of (23), the derivatives required for the 
application of least-squares analysis to (10)-(13) may be 
obtained. Evidently A and A' are functions of many of 



J. KARLE 415 

the 9 appearing in the determinant from which A and ,4' 
are formed. The least-squares treatment of highly non- 
linear systems of equations such as (10)-(13) would 
normally have a very small convergence range. The next 
section is devoted to a discussion of how the conver- 
gence range may possibly be extended. 

Func t ion  mod i f i ca t ion  a n d  rol l ing  

A method for extending the range of convergence for 
the least-squares minimization technique in nonlinear 
systems has been described (Karle, 1991). The basic 
concepts are as follows. 

(i) Modification of the character of the defining 
equations so as to reduce the number of false minima 
in the minimization function, while preserving the global 
minima. 

(ii) Alteration of the shape of the minization function 
from time to time during the least-squares calculation, 
while keeping the modified character of the defining 
equations constant. The false minima that are present 
may thus change in their number and location, while the 
global minima remain the same. 

Operation (i) is called function modification and (ii) is 
rolling. They both preserve the global minima but alter 
the minimization function. Operation (i) does so by 
changing the defining equations and operation (ii) does 
so in many other ways as a function of time. For 
example, sets of data and particular equations used for 
the minimization function may change during the course 
of the computation. Of course, the form of the defining 
equations could also be modified from time to time 
during the least-squares procedure. In some cases, 
operation (ii) suffices to bring a problem to rapid 
convergence with the use of the original defining 
equations and variation of the data sets over time. 
Examples of the application of concepts (i) and (ii) have 
been presented (Karle, 1991) in some initial studies of 
the problem of the direct calculation of atomic positions 
from known structure-factor magnitudes. 

Concluding remarks 

An objective for introducing the least-squares technique 
that involves modification of the defining equations, or 
alteration of the minimization function, or both, is to 
avoid the necessity for making many initial starts of the 
phase determination. There are many instances in which 
it is not necessary to modify the defining equations, 
merely alter the minimization function from time to time. 
This occurs when there are not too many false minima. A 

precise statement concerning how many is too many 
cannot be made. There are too many, however, when 
attempts to alter the minimization function do not result 
in ultimate convergence to a global minimum. 

There are a number of matters that merit further 
attention. One concerns the further improvement of the 
least-squares technique in order to facilitate convergence. 
Much experimentation is also required to discover 
optimal ways to use the phase-determining relations. 
For example, is it preferable to use one large-order 
determinant or the lower-order determinants that can be 
prepared from it, or some combination of determinants 
including low- and high-order ones? In addition, it may 
be worthwhile to explore the numerous ways of selecting 
the elements in the first column of the determinants that 
can generate closely related determinants, which might 
be valuable when used in combination. The sensitivity of 
the formulae to errors in the data also needs to be 
evaluated. 

As a final remark, we note that the mathematical 
formulae currently in general use for phase determination 
are rather special cases of the mathematics discussed 
here. Studies of the general formulation can be 
approached in their algebraic context or with the 
application of the maximum determinant rule, or some 
combination. 

My thanks to Mr Stephen Brenner for writing the 
appropriate programs and making the computations. This 
research was supported in part by the Office of Naval 
Research and in part by Public Health Service Grant 
GM30902. 
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